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MATRIX METHOD OF DETERMINING THE LONGITUDINAL-STABILITY COEFFICIENTS AND
FREQUENCY RESPONSE OF AN AIRCRAFT FROM TRANSIENT FLIGHT DATA!

By James J. Do~xecax and Henry A, PEaRsON

SUMDMIARY

A matriz method is presented for determining the longitudinal-
stability coefficients and frequency response of an aireraft
from arbitrary maneuvers. The method is devised so that it
can be applied to time-history measurements of combinations
of such simple quantities as angle of attack, pitching rvelocity,
load factor, elevator angle, and hinge moment to obtain the
over-all coefficients, Although the method has been devised
primarily for the evaluation of stability coefficients which are
of primary interest in most aireraft loads and stability studies,
it can be used also, with a simple additional computation, to
determine the frequenecy-response characteristics. The entire
procedure can be applied or extended to other problems which
can be expressed by linear differential equations.

INTRODUCTION

The longitudinal characteristics of an aireraft are often
related by a second-order linear differential equation in
which the aireraft is assumed to have freedom in pitch and
in vertical motion; changes in forward velocity are so small
that they can be neglected. In the evaluation of tail loads,
the coefficients of the differential equation and the elevator
foreing function are generally assumed to be known and the
response is to be determined. In the evaluation of gust
problems the response and the coefficients are assumed to
be known and the foreing funetion is to be determined. By
analogy in stability and control work, it is desirable to
determine the restoring-force and- damping-force coefficients
from known foreing funetions and responses. In case the
damping is small enough to obtain the rate of decay (or
logarithmie decrement} and period from the oscillation, the
required damping and restoring coefficients are easily com-
puted. Models employed in rocket-powered and drop tests
can he and usually are so ballasted that such well-defined
osecillations are obtained; however, the longitudinal oscilla-
tions of piloted airplanes ordinarily are nearly critically
damped and this analysis procedure cannot be applied. In
any case, additional data and analysis are required to
evaluate the control-effectiveness coefficients.

Appreciable work has been done recently in the field of
determining the frequency-response characteristics of air-
eraft in flight and evaluating the stability coefficients from

the frequency-response data. In general, the methods for
determining these relationships have been to impose actually
prescribed motions such as unit steps, triangular pulses, or
sinusoidal motions to the elevator by means of special equip-
ment and then to measure the responses. The theoretical
methods for reducing such data are usually tailored to fit
the prescribed elevator motion. References I and 2 present
methods of ireating input and output data by Fourier
analysis to determine the frequency response. Compared
with the direct sine-wave input method of evaluating the
frequency response, these methods require less special equip-
ment and flight time at the expense of additional compnta-
tion. For the practical application of the Fourier transform
method, certain restrictions are placed on the nature of the
input and the resultant output motions: the motions must
start from a trimmed steady-state condition and, at the end
of the transient period, must approach either the original
or the new steady or quasi-steady trim conditions.

In view of the complications and limitations of existing
methods of flight evaluation of stability coefficients and fre-
guency response, development of a simple and less restricted
flight test and associated analysis was considered desir-
able. A matrix method for evaluating the longitudinal-
stability coefficients of an aireraft directly from the input
and output time histories corresponding to arbitrary con-
trol motions has been derived in the present report. The
frequency response and some of the stability derivatives
may be evaluated once these coefficients are known. Al-
though this method was derived to determine the second-
order longitudinal response of an aireraft, it can be applied
to other systems which can be approximated by second-
order differential equations; extension of the method to
higher-order linear systems is also possible.

SYMBOLS
Ay, s combinations of aerodynamic parameters (sec
, table 1)
b wing span, feet
b, tail span, feet
chord, feet
s hinge-moment coefficient ———H—
% e, S,

t Supersedes NACA TN 2370, “Matrix Method of Determining the Longitudinal-Stability Coefficienis and Frequency Response of an Aircralt From Transient Flight Data” by James J.

Donegan and Henry A. Pearson, 1951.
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Chy rate of change of hinge-moment coefficient with
elevator angle (0C5/09)

Yy lift coefficient (L/gS)

Cn pitching-moment coefficient of airplane without
horizontal tail (Mb/qS?

Cm, pitching-moment coefficient of isolated horizontal
tail surface

g acceleration due to gravity, feet per second per
second

H hinge moment

by airplane radius of gyration about pitching axis, feet

K empirical constant denoting ratio of damping mo-
ment of complete airplanc to damping moment
produced by tail

L lift, pounds

m airplane mass, slugs (W/g)

A pitching moment of airplane, foot-pounds

n airplane load factor

q dynamic pressure, pounds per square foot

I

(07

S wing area, square feet -

S, horizontal-tail area, square fect

¢ time, seconds

I true velocity, feet per second

W airplane weight, pounds

Ty length from center of gravity of airplane to aero-
dynamic center of tail (negative for conventional
airplanes), feet

KK, )

K1, Ky,

K5, K, dimensional constants occurring in equations

K7 K, & (see table I)

G, KO,

K K,

Ky J

o wing angle of attack, radians

o tail angle of attack, radians

¥ flight-path angle, radians

8 angle of pitch (a+7)

8 elevator deflection, radians

. de

€ downwash angle, radians v a)

7 tail efficiency factor (q:/q)

& phase angle between ineremental load factor and
elevator deflection, degrees

mass density of air, slugs per cubic foot
T dummy variable of integration
@ elevator angula,r Velom ty, radians per second

The notations & and 4, & and §, and so forth, denote single
and double differentiations with respect to time.

a bar over letter represents maximum value
la] bars on sides of symbol represent absolute value

e

Relotive wind.-~"

AL,

Tangent fo
flight path..

“\Flight path

F16uRrE 1.—Sign conventions employed. Positive directions shown.

Matrix notation:

1] rectangular matrix
square matrix

{1} column matrix

—
et

HO integrating matrix (sce table II)
[|4]| matrix defined by equation (24)
[l4]l transpose of [{A|]

Subscupts

% denotes row elements in matrix

7 denotes column elements in matrix
¢ tail

LONGITUDINAL EQUATIONS OF MOTION
ELEVATOR MOTION

In this section the usual longitudinal equations of motion
following an elevator motion are derived in such a manner as
to obtain expressions between some of the simple combina-
tions of variables which are measurable in flight: namely,
angle of attack and elevator angle, pitching angular velocity
and elevator angle, or load factor and elevator angle. The
usual assumptions of linearity, small angles, no loss in air
speed during the maneuver, and no flexibility are implied.

As in reference 3, the differential equations of motion of
an airplane due to a given elevator deflection may be written
as (sce fig. 1 for deﬁnitions)'

mw—m- AagS— ( 705,86=0 (1)
e de\_, #ide 2 K
o 28 b+d [A“<1‘3'& TV Tt
da dCy, S2 .
—d—at AB] n:qStT:+ da ﬂtq bt A5—me26=0 (2)
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By use of the definitions

A=Ay +Ax
f=v+c (3)
f=vta

equations (1) and (2) are reducible to the following second-
order differential equation giving the relation between angle
of attack and elevator angle:
a+Ka+KAa=K;A8+K,5 (4)
where the K’s are the constants for a given set of conditions
and are defined in table I. The coefficient K| represents an
effective aerodvnamic-damping coefficient; K, represents an
offective aerodvnamic restoring-force coefficient; K; and K,
represent effective elevator-control power coefficients.

An alternative form of equation (4), expressing the relation
between angle of pitch and elevator angle, may be obtained
by inserting relations of equation (3) into equation (4) and
noting from equation (1) that

’): ihAC!+.:1gA§
’Y—Axa Az =

b ¢
M:Alf A a’t+A-gj Y
o 0

where A; and A4, are combinations of aerodynamic param-
eters defined in table I. The equation obtained after
these preceding substitutions are made is

e . |4
BLK, 6K, A=K AS+ K, f A5 dt (6)
0

where (see table I)
K=K+ K 4,+ K4,
Kfs:Az (ot Ale

From the following definition for load-factor increment

V ._dC q _
it follows that
WS A,
Aa= dCz, An —EA6
da
PRNLINC R §
aCy Ay - (8)
do 1
WIS . Ay
*=q0, T A
da J
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TABLE L—DEFINITION OF CONSTANTS OCCURRING
IN EQUATIONS

gggé Definition

- ﬁ dc”-:b;.ﬁtg K dC,r_
K, Qm[da, KL +c§ S

B

K, pV%{dc 5 .a'-’C’L: r[( sy _fﬁge&j?

de k"b' doz: \.,“2 m 5
K; p'[z dC[_l Sg“dC’m‘ S‘ dC’;_ dCLtAT); prng
2m| ds "R ds "'hik? da, db ., 2 mES}
ch S
K gyt
: @ Mty ¢
ddC;L S
A[ W‘
ac.
dEt”thSz
AZ - I
mb
K; | K3+ Kids+K A,

K¢ | AR5+ ARG

acy
. da 15
IX,— W[S K E 11 [&)
WIS K —A 7.
K, LA»
g
K; OC;. Ig 1
-] ._'__
B8 Bmg sa v\t i
K; 3C, de dCy pS :,‘
o P2 =2 —_— = Tt
K KZTC;,‘ Oa,( dee do 2m ,',“
1
K| —K
3 CII.; K
ac,
da -0
K ﬁ K;
The ‘? § term in equation (8) was found to be small and
1

is omitted in the subsequent derivation.

Substituting the results from equation (8) into equation
(4) ylelds another form expressing the relation between
measured load-factor inerement and elevator angle as

i K+ K An=K; A5+ Ky § ©)
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where (see table I) K; and Kj are now different forms of the
effective control power coeflicients.

HINGE MOMENT

The coefficients K; to K; occurring in equations (4), (6),
and (9) are those associated with the measured elevator-
motion case. The use of the relation

Oh—a;;" Aa+a—gf‘ Aa, (10)

gives the solution for Ag as

1 20
MZE (Oh——a:’ Aaz) an

Qs

The increment in tail angle of attack to be substituted in

equation (11) is given by

de dC,p S u, de
sa~l s (1= TS ) R (75
(12}
so that
a(‘ d& dCL P S o]
Aa—ﬁ;§0h b [Aa<1—da ) mxz)_

cZ(de L LA
« (la+\:’77;):|5 (13)

In order to shorten the subsequent derivation for the hinge-
moment case, the term K3 in equation (4) and its counter-
parts in equations (6) and (9) are omitted. This effect is
usually small; however, each individual case should be exam-
ined to see whether the term warrants dropping.

A substitution of the value of As given by equation (13)
into equations (4), (6), and (9) gives the following three
differential equations for the same combination of variables
with ", and its integral replacing As:

i KO e K Aam KSC, (14)
G+ K00+ K A= K00+ Q’K f . d (15)
- KOn K An— KO0, (16)

INTEGRAL FORM OF EQUATIONS

Although equations (4), (6), (9) and (14), (15), (16) could
be used to evaluate the effective K coeflicients from flight
measurements of Aq, 4, and An together with measurements
of elevator angle, stick force, or hinge moment, it is seen that
several differentiations of the measured data would be re-
quired. Inasmuch as a numerical differentiation process is

inherently more inaccurate than the corresponding integra-
tion process, the preceding equations are changed and
rearranged so that either A, 4, or An, which are to be the
measured values, appear as separate quantities on one side
of the equation and the operations on these quantities
appear on the other side. In integral form the rearranged
equations are '

¢ ¢ T ¢ T
Klf Aa dt+1{2ff.xadrdf—mf faadnﬁ—
Q JO Jo J0J0

ZthAsdt_—_——Aa (a7
0
t T
K;e+K2£‘edf—K5ﬁ ASdi—K, fthad-rdtz—é (18)
. Ja /A

; ¢ pr ot
K,f An.dt—{—KgffAndrdt—-K71 f Asdrdi—
0 0 Jo Jo Ja

¢
K, ﬁ] Asdt=—An (19)

T ¢ T
Kf’flAadt—}—Kg"rf A drdt—st’I; £ O, dr di=—Aa
Q Ja Q N N
(20)

¢ ¢ T
1{109+K20ﬁ edt—K3°j: Codt—K & ﬁ)ﬁ L drdie—b
‘ 21)

K, fAndf——Kgf fAndm’z‘—Kr) f‘ Cydrdt=—
22)

In prineiple to solve any one of these equations for the K
coefficients, it is only necessary to tabulate the recorded
values of the two basic variables (for example, in cquation
(19) the values of An and A8} at a number of points ¢, &, &,
and so forth along a given time history and to perform the
indicated integrations from =0 up to the time of the recorded
value #;. A number of simultaneous equations containing
the unknown K's result which are then solved. The number
of equations can vary from a minimum, in which the number
of ordinates is equal to the number of unknown K's, to the
case where there are more equations than unknowns. When
the number of ordinates equals the number of unknown K's,
the usual methods of solving simultaneous equations may be
used to obtain the K’s; however, when there are more equa-
tions than unknowns, a least-squares method is required to
reduce the equations. Since the best average value of the
K’s is obtained when many points along the time history are
used, a least-squares procedure is generally preferable.

Although the integration indicated in equations (17) to
(22) can actually be performed graphically from the time
histories, it is deemed better to express the equations in
matrix form in order to endble a complete numerical solution
to be made.
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MATRIX FORM OF EQUATIONS

Since the derivation in matrix form for any one of equations (17) to (22) is the same as for any other equation, only
equation (19), involving measured load factor and elevator angles, is used. In matrix form the system of simultaneous
equations obtained from reading the time history of the load factor n against elevator angle 8 in an arbitrary pull-up may be

written

| ﬁ‘An dtﬁ‘ﬁ'm drdi— ";tltj;'—ssd,— dt— E

1 t (7 2 pr
f Andt[‘ fAnd'rdf—f fABdef—f
Jo Jo Jo Ju Jo Jo

iz [ £ T £z T 4
f Andtf Andrdt—f Abdrdi—
Q o [s]

3] JO .JO
9 iy 7
lﬂ Andtf f Andsdt—
O JO 1}

78N
] f Asdrdi— f
Jo o Jo 0
In shorter form this expression may be rewritten as

K

4|

={—Aan;}

where the matrix [jAll is in general a rectangular matrix;
that is, for every time f; one equation or one row of the
matrix |[A| is obtained. The individual elements of matrix
|IA]l are evaluated from the known values of ineremental
load factor and incremental elevator angle. As mentioned
previously, the integration may be performed graphically
but in the present case. use is made of the integrating
matrices derived in reference 4. Thus, any element in the

&3
rectangular matrix (equation (23)) such as ’ Andt or
SO

(1 T
f r Andrdt may be expressed in matrix form as follows:
J0 o

| [awae e any 25)

t

J |

The integrating matrix ||Ci| as derived in reference 4 is
given in table I, with a time interval Af=0.1 second. It
should be noted that a sufficient number of time intervals
within the natural period being computed must be chosen to
give a solution; usually the shorter the time interval chosen
for the integrating matrix, the more accurate will be the
final solution.

a1

{

| [:_\n d‘—dt% =l[01[|U:An dt

Y

£ £ r
Abdt —An,
K
t2
Asdt —An,
it _—
“asdt|y [T —an f (23)
Il';
“ 54 A
Addi K, —An,
" J . J

After the elements of the matrix A (equations (23) and
(24)) have been determined either by applying the inte-
grating matrix or by graphical integration, the method of
least squares is applied to the solution of the system of
simultaneous equations. In matrix notation the least-
squares solution involves multiplication of matrix .1 by its
transpose .4’ so that eguation (24) becomes

[A’AJ{Kj={—4"an;} (26)
where the matrix [A’4] would be a 4 by 4 matrix for equa-
tions (18) and (19). Equation (26) can now be arranged to
be solved directly for the K’s by multiplying by the inverse
matrix [47A]7! so that finally

AT A — A7 AR

Alternately the system of simultaneous equations repre-
sented by equation (26) can be solved for the values of K by
any of the well-known methods of solving sets of simul-
taneous equations, that is, by eliminating the variables or by
using Crout’s method (reference 5). The derivation in
matrix form of any of the other equations from (17) to (22)
is similar to the plan given for equation (19) and, therefore,
1s not given.

FREQUENCY RESPONSE

As first derived by Cornell Aeronautical Laboratory
(reference 6), the frequency response was measured by
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TABLE IT.—INTEGRATING MATRIX [C)]

{Based on 0.1-se¢ intervals}

. 0 6.1 0.2 03 04 0.5 0.5 07 0.8 { 0.9
0 0 0 0 0 0 0 0 0 -
1| .041667 | .000667 | —.008333 | O 0 0 0 0 0
.2 . 033333 . 133333 . (33333 0 0 b} 4] 0 - ~
31 033333 133333 076000 | 066667 | —.008333 | O 1o 0 0
.4 . (033333 133333 066667 . 133333 033333 0 Q [4] [ -
51 033333 133333 oB86o7 | .133333 075000 | .06667 | —.008333 | O 0
.6 . 033333 133333 066667 .. 133333 . 066667 . 133333 . 033333 4] 0 - -
7| 033333 133333 go6667 | .133333 | .060667 | .133333 | .O75000 | .0GGGGT | —.008333 i
.8 . 033333 133333 066667 . 133333 06666 . 133333, . 066667 .133333 033333 .
.9 . 033333 133333 060667 . 133333 06666 . 133333 006667 . 133333 075000
1.0 . 033333 133333 (066667 . 133333 066667 . 133333 (66667 . 133333 0BGE6T __
i1 .033333 133333 006667 . 133333 066067 . 133333 066667 . 133333 {66667
12 | 03333 133333 066057 | .133333 066667 | .133333 066067 | .133333 060057 o
L3 . 033333 . 133333 066667 . 133333 066667 . 133333 066667 . 133333 066667
1.4 . 033333 . 133333 66667 . 133333 00666 .133333 . 066667 . 133333 066667
%. g . 033333 133333 066667 . 133333 066667 066667 . 133333 (66667 i
SO IO I SRR R S U R _ . -
actually subjecting the airplane to sinusoidal elevator mo- | elevator angle is seen to be .
tions of various frequencies by means of specially constructed n___ = K 35)
apparatus. From these results the coefficients K, K;, and 8 VIG—w) (Ko

so forth, which are significant in control and loads work,
could be determined provided the equation of motion was
assumed.

In the present instance since the coefficients K; and K,
are determined directly from the equation of motion, the
corresponding relations are given so that the frequeney
response, which is significant in the design of stable autopilot
systems, can also be determined.

When a sinusoidal elevator motion has been assumed,
then equation (9), omitting the minor effcets of K3, becomes

A+ K-+ K,; An=K,5 sin ot (28)
where An is the load-factor increment and o Is the angular
velocity of the elevator. Since equation (28) is a linear
equation with constant coeflicients, the steady-state solutions
are of the form

n=" sin (wt-+ ¢)

A="Tw cos (wi-+ ¢)

fi=—"w? sin (wt+ ¢)
By a substitution of these relations into equation (28) the
following equation is obtained:

—7iw? sin (wt+ ¢) -+ K fiw cos (et ¢) -+ _
Kom sin (wt+¢)=K.8 sin ot

(29)

(30)
which may be rewritten as

(K — %) sin (wt+¢)+ K 7w cos (ot -+ ¢)=K;8 sin wf (31)
or

B sin (wt+¢-+¢)=K;8 sin wt (32)
where
B=K3=1(K;,— o)+ (K,0)? (33)
and
- —Klw .
e h— L
e=¢=tan R ot (34)

From equation (33) the amplitude ratio of load factor to

and the phase angle at various frequencies is given by
equation (34).

In the present case the values of K, K;, and K; would
have been derived from the flight measurements and the
values of » would be assigned.

For the measured hinge-moments case the values of K°
and K;? would be used instead of K; and K, and so forth.
The complete frequency-response relations and transfer
functions including all derivatives and integral of & for
equations (4), (6), and (9) are given in the appendix.

DETERMINATION OF AERODYNAMIC DERIVATIYES

The various K coefficients determined from the meas-
ured values may be termed effective coeflicients and include,
to some extent, effects of some nonlinearities, elasticity
and effects of other variables which are omitted in the
usual analysis. In addition, as may be scen from table
I, the K coefficients are combinations of various quantities
involving known geometric qualitics, the conditions of the
problem as well as aerodynamic derivatives. The stability
coefficients given in table I are expressed in a form suitable
to loads work. In usual stability calculations, these co-
efficients are generally expressed in a simpler form where
the number of aerodynamic variables are reduced and, as
s result, the coefficients are more ecasily approximated.

A total of 10 aerodynamic variables d—@) Si—%; d—e: ﬁ;

de’ da da doa,
A, dCn, 3G, 3G,
ds T ds 0’ 08
the coefficients of table I.  Although all the aerodynamic
derivatives cannot be determined directly from the four basic
coefficients (namely, K|, K3, K, and K)), engineering approxi-
mations of the more significant derivatives can be obtained
if values are assigned to either some of the more accurately
known derivatives or to those factors having least influence
on the problem.

» 1y, and K appear in the definitions of
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The factors having the least influence on the problem are

i

AC . :
75 which, respectively, allow

K, 7., and the derivative

for the countribution of wing-fuselage damping, tail efficiency,
and moment due to tail camber to which average values
can be assigned. A representative value of K is 1.25.
Representative values of %, range from about 1.2 to 0.8
with the higher limit applyving to propeller-driven airplanes
operating at low speed and full power and the lower limit
applying at high speed with the propeller braking. An
average value for jets or at zero thrust for propeller-driven
4 v\rml
ds
can be obtalned from existing wind-tunnel data or by using
theoretical methods; —0.5 is an average value for tail
surfaces.

Since, as may be seen from table I, K, is directly propor-
('L,
ds

be determined directly from the definition of K..

In order to determine consistent values of the remaining
dCy dCpn de 107, dC,
da’ da’'do do,’ de,’

airplanes is about 0.9. A representative value of

tional to ; an effective value of this derivative can

significant serodynamic derivatives

1C .
and ((1—5"; further values must be assigned to several of the

remaining derivatives. The derivatives chosen would natu-
rallv be those for which values could be obtained from other
sources with the greatest degree of accuracy.

EXAMPLES

In order to illustrate the foregoing method as well as the
consistency of results obtained with different sets of instru-
mentation, tyvpical examples are given using data obtained
from three flights (referred to as flight 1, flight 2, and flight 3)
of a high-speed medium jet bomber. For flight 1, the method
of a computation is obtained in sufficlent detail to enable a
reader not too familiar with the mathematical details to
reproduce similar results. Flight 1 is further divided into
case [ where data for An and A are used and case II where
data for 8 and A§ are used. References 7 and 8 may be
consulted for introductory discussions of least-squares and
matrix methods.

Figure 2 shows the measured time histories of velocity,
altitude, incremental elevator displacement, ineremental load
factor, and ineremental pitching veloeity obtained during a
push-down pull-up maneuver. By means of the values from
figure 2, increments in load factor and elevator angle at
0.1-second intervals have been tabulated in columns 2 and 3
of table ITI. The elements of the A matrix (equations (23}
and (24)) are given in columns 4 to 7 of table III. Each
element in these columns has been determined by performing
the indicated integrations on the results given in columns
2 and 3. In this instance the integrations have been
performed by use of the previously mentioned integrating
matrix derived in reference 4. This method is particularly
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FIGURE 2.—Time histories of velocity, altitude, incremental elevator displacement, incre-
mental load factor (computed and measured), and incremental pitching veloeity (computed
and measured) for fight 1 at Mach npumber 0.40.

suitable when automatic computing machines are available.

The elements of matrix A (equation (23)) which are given
in columns 4 to 7 of table IIT indicate that with the Af
spacing used there are 23 equations involving the four
unknown values of K. In order to obtain the least-squares
solution of these equations, the transpose |[A}l]’ of matrix |[A]]
is required. The transpose matrix is obtained by inter-
changing the rows and columns of matrix ||A]].

The product of the 4-row, 23-column transpose matrix by
the 23-row, 4-column original matrix yields the 4-row,
4-column matrix in the coefficients of K;. The resulting four
simultaneous equations are then solved by any of the well-
known methods of solving sets of simultaneous equations.

By performing the preceding operations, the following
values of K were obtained from the data listed in table III:

K K, K K
3.314221 7.339706 —119. 553905 5. 819025

In order to show how well these computed values of A
represent the original data, they have been reinserted into
equation (19) along with the measured values of A8 to deter-
mine calculated values of An. The computed curve is given
by the dashed line in figure 2 of the plot of An against t.



240 REPORT 1070 ~NATIONAL ADVISORY COMMITITEE FOR AERONAUTICS

TABLE III.—TABULATED VALUES FOR FLIGHT 1

1 2 3 . 5 i 6 ! 7
|
Time. ¢ Acceleration Elevator angle : ¢ rr trr ¢
(seci increment, increment, As f An dt f f Andrdt —f f Asdrdl ——J- Addt
An (radians) G O Jo 0 Ju 0
0 0 0 0 g ' g 0
.1 054 L 0466087 . 604050 . 600225 —. 000091 —. 002485
.2 —. 054 - Q77666 - 005400 000720 —. 000622 —. 008814
.3 — 111 .082902 —. 002133 000067 —. 001903 —. 016368
4 —. 254 - 085084 —. 019667 —. 000040 . —. 004008 —. 025782
] —. 444 . 089010 -, 054950 —. (03632 —. 006969 —. 033390
.6 — 588 . 093810 —.106933 - —. 011587 —. 010821 —.04312¢
-7 — 784 -098610 —. 175688 —. 025559 —. 015610 —. 052741
'8 —.065 . 103846 —. 263233 —. 047347 —. 021386 —. 062860
.9 —1.122 . 106900 —. 367483 —. 078747 —. 028197 —. 073405
Lo —1.201 - 109081 —. 488033 —.1213% —. 036076 —. 084211
11 —1. 462 . 108643 —. 626166 , ~. 176978 —. 045041 —. 005094
‘ 1.2 —1.575 108645 — 778500 —. 247003 —. 055094 —. 105954
i 1.3 —1.704 L 108645 —.043233 —.333111 —. 066233 —. 116830
i 1.4 —1.739 107336 —1.116166 —. 436013 —. 078457 —. 127610
1.5 —1.837 053668 ~1.295083 556550 —. 001666 —. 135661
16 —1.801 003491 —1.479099 —. 595333 —. 105416 —. 133490
1.7 —1.700 004800 —1.654399 —.852104 —. 119204 —. 138005
1.8 —1, 569 —. 004799 ~1. 818099 —1.025826 —. 133202 —. 135086
1.9 —1.305 —. 017017 —1.961174 —1.214978 —. 147063 —~.137970
2.0 ~1.116 —. 026179 —2. 081599 ~1.417305 —. 160760 —. 135785
2.1 —. 869 —. 036651 —2,181332 —1.630682 —~ 174186 ~. 132600
2.2 —. 564 —. 041887 —2. 953468 —1.852652 — 18725¢ —. 128629
2.3 —.315 —. 045814 —2. 295790 —2.080341 —. 198905 —. 124284
DISCUSSION .

The same process as was used for the relations of An and As
was also applied to the relations of  and A8 shown in figure 2.
The tabular material corresponding to fable III is not
included; the values of K obtained, however, were as follows:

1{1 I{Q K5 Kﬁ
3. 13167 8. 4123 —7.6212 —12, 1967

These values of K when reinserted into equation (18)
resulted in the computed curve of § given by the dashed
curve of figure 2.

In addition to the preceding computations, several push-
down pull-up maneuvers, made under similar conditions of
altitude, weight, and center-of-gravity positions, were ana-
Ivzed to obtain the variation of several of the computed K's
with Mach number. In this analysis only, the measurements
of An and A8 were used. The results obtained for three Mach
numbers are shown in figure 3. The short parts of the curves
shown are the expected variations in the K’s.  Table I shows
that K, should vary linearly with speed and the other values
of K should vary parabolically. ~The ecurves shown are
merely guides adjusted to pass through zero and through the
value of K at the 0.45 Mach number point.

The values of K, and K, shown in figure 3 were also inserted
into equations (34) and (35) to determine the corresponding
curves of frequency response. The results are given in
figure 4.

In addition the values of K|, K, and frequency response for
case I have been computed by using the definitions of table I
and aerodynamic derivatives obtained from wind-tunnel
tests. These results are also shown in figures 3 and 4. The
aerodynamic derivatives were listed in an unpublished report
by the North American Aviation, Inc. and were obtained in
the Southern California Cooperative Wind Tunnel.

If only the frequency response is desired, it can be deter-
mined without recourse to the equations of motion; however,
if the stability coeflicients are desired, it will be necessary to
use the equations of motion as has been done in the present
report. For either case several mathematical methods are
available (references 1, 2, and 6) to obtain these required
quantities and all methods, if carried far enough, should
vield similar results. Thus, the present method is basieally
no more accurate than any other method; however, it hias the
advantage of simple instrumentation and experimental
procedures but may require more cxtensive computation.

As with other methods where linearity is a basic assump-
tion, most consistent results are to be cxpected when the
maneuvers are confined to the angle-of-attack region where
linearity exists. In order for the outlined mathematical
procedures to succeed, the mancuvers should cover as much
of the linear range as possible in a short period of time and
the portion of the maneuver considered should be confined
to that portion where the integrals are increasing. This
practice insures that the elements of the original matrix A
are all different and that the subsequent least-squares
matrix [A’A] is not ill-behaved. Enough of the response
time history should be taken to cover a good portion of the
natural period of the system, A point worth noting in
connection with the use of the equations is that zero time is
assumed as being al the start of the maneuver when the
airplane is in steady flight. Sinece the present method is not
restricted by the final condition, it offers the possibility of
performing an analysis on fragments of curves with the result
that any variations in the constants. may be determined.
In such an analysis two possibilities occur: (1) where the
fragments considered start from a fixed initial condition and
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become successively longer, and (2) where the fragments are
taken as consecutive. In the first case, the present method
may be applied without any modification; in the second case,
the equations must be altered to introduce the initial condi-
tions for each fragment. These possibilities have not,
however, been explored.

In the derivation given herein, lag in downwash has been
included (see equation (2)) but unsteady lift effects have not.
References 9 and 10 show that for the present purposes the
inaccuracy of omitting unsteady flow effects, except down-
wash lag, is probably no greater than the inaceuracies in the
original assumptions or of the experimental data.

Other terms and other combinations of measurements
might have been included in the derivations given—for
instance, the equations are readily adapted to measurement
of tail load and either airplane load factor, airplane angle of
attack, or pitehing angular velocity. Additional terms may
have been included to account for flexibility. Also it is
possible, as for example in the case of the hinge-moment
relations, to include additional terms to account for elevator
moment-of-inertia efTect, rate of elevator motion, and so
forth in order to make the methods more inclusive. The
inclusion of these further terms, however; generally requires
additional A's to be evaluated and would only be justified
when the assumptions implied in the basic equations of
motion can be more closely approached and when the
accuracy of measurements is high. Although the method
had been applied herein to second-order differential equations,

241

Ore——0 .
L T l I Y
2 SR Flight | 0.40 —|—
9 X . — —— Flght2 45
> 40 \\\\ Ne Lo d——— Fiight 3 50
3 \ N —T = Flight [, computed
i grom wirid~runnel |
o aia
« NG
v 9 \
N N
g \}\, 4
RS :’\
By e
o /120 3 T 1
8 \\g~ —L
© ~— "
160 —
32|
3
3 &4 \
- ] — N
!5[? -~ - 4
<t \ \\
S /6 :
S I ™
L === > N
%' g [~ ™~ N ~
N < P —
3~ \\\ \\\ -
3 SR B 2
g R S
<
% / 2 3 £ 5 3 7

w, rodiansfsec

FIGURE 4.—Alrplane frequency response,

it may be extended to higher-order equations with the limita-
tion that too many integrations destroy the conditioning of
the equations used in determining the coefficients (equation
(26)) and make the equations difficult to work with.

The results of the sample computations in which two
different sets of instrumentation were used indicate an
average difference between the respective K coeflicients of
about 10 percent. The use of a least-squares method
permits calculation of a probable error, which is an indication
of how well the second-order system and the coeflicients
(computed on the basis of 0.1-second time intervals) fit the
data. The expression used in computing the probable error
is

2
2E' B,
!\r_x'\ ii

Ki=0.6745\/

where B;; is the main diagonal term of [A’A]™Y, E is the
difference between the computed and measured value of the
variable, N is the number of cases considered in the least-
squares procedure, and « is the number of variables deter-
mined. This probable error has been ecalculated for case
T and case Il and indiecates an error of 0. 3 in K; and 0.5
in R; for the computations in which the accelerometer
measurements were used. These values are contrasted with
probable errors of £0.1 and £0.3 for the pitching-angular-
velocity measurements. These probable errors are asso-
ciated with the very small differences between the solid-line
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and dashed-line curves shown in figure 2. Greater accuracy
may be obtained by increasing instrument accuracy, record-
reading accuracy, and correcting original data for instrument
errors. Further accuracy in the method may always be
attained by using smaller time intervals.

The results shown in figure 3 for the three flights investi-
gated give some idea of the scatter to be expected between
runs as well as the variation of the coeflicients &, and K, with
Mach number. As might be expected from the definition,
K, is seen to vary linearly with Mach number with little scat-
ter. On the other hand, the values of K, either indicate a
linear variation with Mach number or a scatter about the
expected parabolic variation.

The computed values of K; and K, (ﬁg 3) obtzuned from

the wind-tunnel data are in fair agreement with the flight-
test values. For many engincering purposes this agreement
may be adequate and probably typical of what might be ex-
pected if wind-tunnel data were used at the design stage.
Since all of the K's are defined in table I, the dynamic longi-
tudinal characteristies of an aircraft may be estimated in the

-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

design stage by computing the K’'s and inserting the values
in the frequency-response relations given in the appendix.

CONCLUDING REMARKS

A matrix method has been presented for determining the
longitudinal-stability cocfficients and frequency response of
an aircraft from an analysis of arbitrary maneuvers in which
simple instrumentation is used. Errors in instrument accu-
racy and probable errors due to the use of a least-squares
method are briefly discussed. Possible improvements in the
method are discussed but, as of the present, it appears im-
provements would be justified only for those cases where the
basic assumptions are closely approached and where instru-
ment accuracy is high. The method is equally applicable to
other problems which can be expressed by second-order
differential equations.

LaNGLEY AERONAUTICAL LLABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Laxgrey FIELD, Va., December 15, 1950,

APPENDIX

FREQUENCY-RESPONSE RELATIONS

In the body of the report the phase angles and amplitude ratio were given for only the simplest case.

The complete

frequency-response relations and transfer functions for the equations involving & and its derivatives are now presented.
If D represents the differential operator d/d¢, then the steady-state response due to a sinusoidal forcing function can be ob-

tained by substituting 4w for I in the transfer function.

The following relations were developed by this procedure:

i Equation Transfer Function P%lase Ang{e Amplitude Ratio
Ae  EFED —Kw Ko \/ Rt R
ErRact Fabe=IAH RS | [l gD IR, ei=tan™ T b (Kom PR
A_a——ﬁ__ =tan~! —Klw / 2 — _ K& e
a+K;a+K2Ao¢ KgAa Aa_D2+K1D+K; d)aai Kz_w2 Ad ’\/<K2—w2>2+K12(.02 B
\" . ) _ > t ‘A—g_ K5D+I{6 -1 K2 —1 @ KGZ"FKEO
9+K13+K2A9_K5A6+A6ﬁ Aatha—D(D?+KID+K2> éo,—tan- 22— 4 tan = B
, A KAHEDYED, . SKe . ., Kwe |[A1|_ [El 2+(K7—ng2)?
n+Kln K2An——-[& A5+K85+KQ A5 DZ+K1D+K2 ngza—tﬁn Kg—wz_{_tan K-‘--——ng A6 <K2 w2)2+K12w‘2'
“ . _ : An K?TKSD . _ ~K1w = Kg(;) @ . I(gng'{—K;Z
rRit K=Kt Kl G g DR, | T Bma T K Koo K7
: “ . An__ K‘[ ) _ _ ——Klw An K" -
i A 2 DFEDTE, =t g 53| VKot Ria
I —
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